Talk @ ETRI January 22, 2020

Graph Representation Learning

Sungsu Lim Chungnam National University

Brief Bio

Sungsu Lim

Assistant Professor Data Intelligence Lab. Computer Science and Engineering Chungnam National University

Web: <u>http://cnudi.com/</u> E-mail: <u>sungsu@cnu.ac.kr</u>

Selected Publications

1001001 110010010

Recent Projects

Knowledge Graph Mining Privacy-Preserving ML (with <u>Nota Inc.</u>) Graph Summarization (with <u>K. Shin, KAIST</u>)

[TKDE '19] LinkBlackHole*: Robust Overlapping Community Detection Using Link Embedding
[PRE '19] Efficient Spread Size Approximation of Opinion Spreading in General Social Network
[TIST '17] Differential Flattening: A Novel Framework for Community Detection in Multi-Layer Networks
[JSTAT '16] Motif-Based Embedding for Graph Clustering (Qualcomm Innovation Award)
[ICDE '16] BlackHole: Robust Community Detection Inspired by Graph Drawing
[ICDE '14] LinkSCAN*: Overlapping Community Detection Using the Link-Space Transformation
[TON '14] Stability of the Max-Weight Protocol in Adversarial Wireless Networks (Humantech Paper Award)

Contents

Motivations

- Techniques
- Our Results

Graph Mining

Networks (graphs)

- **Node (vertex)**: individual, actor, social entity
- Link (edge): interaction between individuals

Popular problems

 Community detection, link prediction, recommendation, influential user identification, social contagion prediction, etc.

Importance of graph mining

 To understand behaviors and interactions through the structure and dynamics on networks

Graph Embedding

Representation learning on graphs

- Finding embedding of nodes to low-dimensional space
- Solving the graph mining problems in a vector space

G = (V)Vector space

Easy to parallel Can apply classical ML methods

Network inference

- Community detection
- Link prediction
- Node importance
- Node classification
- Network evolution

• ...

Reference: P. Cui, Network Embedding, KDD 2019 Tutorial [link]

Graph Embedding

Problem Formulation

- Input: nodes, links, substructures, graphs
- Output: positions preserving graph structures (or properties)
- Goal: solving graph mining problems in an efficient way

Reference: H. Cai et al., A Comprehensive Survey of Graph Embedding, TKDE 2018 [link]

Goal of Graph Embedding

Good graph embedding: "local" structure

- Input: nodes (usually)
- Output: positions preserving local graph structures
- Goal: preserving similarity between neighboring nodes

Reference: W. L. Hamilton et al., Representation Learning on Networks, WWW 2018 Tutorial [link]

Goal of Graph Embedding

Good graph embedding: "global" structure

- Input: nodes (usually)
- Output: positions preserving global graph structures
- Goal: preserving similarity considering connectivity patterns

Reference: P. Cui, Network Embedding, KDD 2019 Tutorial [link]

Approaches to Graph Embedding

General framework

- 1. Define encoder & similarity
- 2. Learn node positions in a vector space

Main approaches

- 1. Adjacency-based similarity [WWW 2013, CIKM 2015, KDD 2016, KDD 2018, etc.]
- 2. Random walk approaches [KDD 2014, KDD 2016, KDD 2017, WWW 2018, etc.]
- 3. Graph neural networks [ICLR 2017, NIPS 2017, Deep Learning on Graphs, etc.]
- 4. Neighbor embedding [ICML 2014, ICDE 2016, JSTAT 2016, TKDE 2019, etc.]

Let's review them!

Contents

- Motivations
- Techniques
- Our Results

Adjacency-Based Similarity

"Lower"-order adjacency similarity

- Encoder: minimizing the difference between edge weights & vector similarities
- Vector similarity: dot products between node positions (cosine similarity)
- Edge weights: one-hop [WWW 2013] & multi-hop [CIKM 2015]

where u, v: nodes in a graph, A: (weighted) adjacency matrix,

 z_u , z_u : node positions, \mathcal{L} : loss function defined on the node positions

Adjacency-Based Similarity

"Higher"-order adjacency similarity

- Encoder: learning vector positions using eigenvalue decomposition
- Edge weights: higher-order [KDD 2016] & arbitrary order [KDD 2018]
 - HOPE [KDD 2016]: similarity measures from social network analysis ($S = M_g^{-1} \cdot M_\ell$)
 - AROPE [KDD 2018]: similarity is a polynomial of adjacency ($S = \mathcal{F}(A) = w_1 A^1 + \dots + w_q A^q$)

$$\min_{U^*,V^*} \|S - U^* V^{*T}\|_F^2$$

 $U^*, V^* \in \mathbb{R}^{N \times d}$: embedding vectors w_1, \dots, w_q : arbitrary weights d: dimensionality of the space

Proximity Measurement	\mathbf{M}_{g}	\mathbf{M}_l
Katz	$\mathbf{I} - eta \cdot \mathbf{A}$	$eta \cdot \mathbf{A}$
Personalized Pagerank	$I - \alpha P$	$(1-\alpha)\cdot\mathbf{I}$
Common neighbors	I	\mathbf{A}^2
Adamic-Adar	Ι	$\mathbf{A} \cdot \mathbf{D} \cdot \mathbf{A}$

from social network analysis

<u>THM</u> $[\lambda, \mathbf{x}]$ is an eigenpair of $A \Rightarrow [\mathcal{F}(\lambda), \mathbf{x}]$ is an eigenpair of S (the order is different)

Random Walk Approaches

Random walk-based "node" similarity

- Encoder: minimizing the difference between RW similarities & vector similarities
- Vector similarity: dot products between node positions (cosine similarity)
- RW-based similarities: language modeling [KDD 2014] & biased RW [KDD 2016]
 - DeepWalk [KDD 2014]: similarity is a degree of co-occurrence in simple random walks
 - node2vec [KDD 2016]: similarity is a weighted sum of BFS-like & DFS-like random walks

id the cold , close moon " . And neither c the night with the moon shining so bright in the light of the moon . It all boils dc Ly under a crescent moon , thrilled by ice the seasons of the moon ? Home , alone , lazzling snow , the moon has risen full ar i the temple of the moon , driving out of

Language sentences

$v_{37} \rightarrow$	$v_{34} \rightarrow$	$v_9 \rightarrow$	$v_1 \rightarrow$	$v_{10} \rightarrow$	$v_{94} \rightarrow$
$v_{73} \rightarrow$	$v_{64} \rightarrow$	$v_5 \rightarrow$	$v_1 ightarrow$	$v_{12} \rightarrow$	$v_1 \rightarrow$
$v_{75} \rightarrow$	$v_{14} \rightarrow$	$v_6 \rightarrow$	$v_1 \rightarrow$	$v_{13} \rightarrow$	$v_{61} \rightarrow$
Random walk in a graph					

- BFS-like walk: Low value of p
- DFS-like walk: Low value of q

BFS-like walk: local microscopic view DFS-like walk: global macroscopic view

Random Walk Approaches

Random walk-based "structure/role" similarity

- Encoder: minimizing the difference between RW similarities & vector similarities
- Vector similarity: dot products between node positions (cosine similarity)
- RW-based similarities: structural identity [KDD 2017] & roles [WWW 2018]
 - struc2vec [KDD 2017]: similarity measures the structural distance between nodes
 - VERSE [WWW 2018]: similarity measures using personalized PageRank, SimRank, etc.

 $R_k(u)$: set of nodes at distance k from u $g(D_1, D_2)$: distance between degree sequences

Structural distance:

$$f_k(u, v) = f_{k-1}(u, v) + g(R_k(u), R_k(v))$$

 \Rightarrow construct a multilayer graph (for each k) to encode structural similarity

Graph Neural Networks

Graph convolutional networks

- Embedding using convolutional networks [ICLR 2017]
- Every node defines a unique computation graph
- Same aggregation parameters are shared for all nodes

Reference: W. L. Hamilton et al., Representation Learning on Networks, WWW 2018 Tutorial [link]

Graph Neural Networks

Graph convolutional networks

- Embedding using convolutional networks
- Inductive capability: can be generalized to completely unseen data [NIPS 2017]

Even for nodes we never trained on

Reference: W. L. Hamilton et al., Representation Learning on Networks, WWW 2018 Tutorial [link]

Graph Neural Networks

Deep learning on graphs

- Interest in graph neural networks has exploded over the past years [<u>ArXiv 2019</u>]
 - SDNE [KDD 2016]: AE (Autoencoder) is used to learn node representations
 - DVNE [KDD 2018]: VAE (Variational AE) is used to learn node representations

Reference: Z. Zhang et al., Deep Learning on Graphs: A Survey [link]

Neighbor Embedding

Divergence minimization on graphs

- Encoder: **minimizing the sum of divergences** for each node $(\sum_u D(\mathbf{x}_u | \mathbf{y}_u))$
- It covers Laplacian eigenmap, elastic embedding, SNE and its variants on graphs, force-directed embedding, etc. [ICML 2014]

Force-directed graph embedding

Find node positions that minimize

$$\mathcal{E}(p|G) = \sum_{\{u,v\} \in V \times V} \left(\frac{w_{u,v}}{a+1} \|p(u) - p(v)\|^{a+1} - \frac{w_u w_v}{r+1} \|p(u) - p(v)\|^{r+1} \right),$$

Attraction Repulsion

where w_u, w_v : node weights, $w_{u,v}$: edge weights, a, r: attraction/repulsion weights p(u), p(v): node positions, \mathcal{E} : energy defined on the node positions

Attraction: adjacent nodes are located close to each other

Neighbor Embedding

BlackHole embedding

- BlackHole embedding [ICDE 2016]: set $w_u = \frac{w_u}{\sqrt{\sum_k w_k}}$ and $a r \gtrsim 0$
- Due to the strong attraction, it attracts the nearby nodes into a black hole & conventional algorithm finds communities of node positions (and nodes)
- LinkBlackHole* [TKDE 2019]: it finds overlapping communities by finding communities in the link-space graph of the original graph

Contents

- Motivations
- Techniques
- Our Results

Part I BlackHole embedding

BlackHole: Robust Community Detection Inspired by Graph Drawing IEEE ICDE 2016

Joint work with J. Kim (NTU, Singapore) and J.-G. Lee (KAIST)

Proposed Algorithm: BlackHole

- Proposing the *BlackHole embedding* that transforms a given graph into the points in a low-dimensional space
- Developing an algorithm that performs clustering on the embedded space, which enables us to discover highly mixed communities

Phase I: BlackHole Embedding

 Solving an energy minimization problem through multiple iterations to determine vertex positions

$$\min_{p:V \to S} \sum_{\{i,j\} \in V^{(2)}} \left(\frac{w_{ij}}{a+1} \| p(i) - p(j) \|^{a+1} - \frac{w_i w_j}{r+1} \| p(i) - p(j) \|^{r+1} \right)$$
Attraction
Repulsion

- LinLog: a = 0, r = -1
 - Conventional design
- **BlackHole**: a = -0.95, r = -1
 - Relatively strong repulsion
 - Exponential growth in attraction

LinLog BlackHole

Design of Our Repulsive Forces

- Increasing the order of repulsive forces (r = -1)
 - cf., Fruchterman-Reingold (r = -1)Davidson-Harel (r = -3)LinLog (r = -1)
 - \Rightarrow Making positions more separable in early stages

How to **break** balls? Increase the **force**!

Design of Our Attractive Forces

- Increasing the attractive force much stronger as the connected vertices get closer to each other $(a \approx -1)$
 - cf., Fruchterman-Reingold (a = 2)Davidson-Harel (a = 1)LinLog (a = 0)
 - ⇒ Attracting the nearby vertices into a *black hole*

Phase II: Clustering

- Applying conventional clustering algorithms to the vertex positions obtained in Phase I
- Adopting DBSCAN
 - The two parameters ε and MinPts are determined by the heuristic

Performance Evaluation

Providing higher quality for both synthetic and real-world networks

Effect of mixing parameter (fraction of inter-community cuts)

Cumulative ranks of M1~M9 for each algorithm

Part II Motif-based embedding

Motif-Based Embedding for Graph Clustering Journal of Statistical Mechanics: Theory and Experiments, 2016

Joint work with J.-G. Lee (KAIST)

Proposed Algorithm: Motif-Based Embedding

- Proposing the *motif-based embedding* that transforms a given graph into points in a low-dimensional space
- Developing an algorithm that performs clustering on the embedded space, which enables us to discover higher-order graph substructure

Network Motifs

Higher-order graph substructures

- The relationships involve multiple vertices within clusters, e.g., triangles in social networks
- By incorporating the motifs, the *motif-based weighting* method reflects motif substructures in a given graph

Triadic closure

Motifs in biological networks

Motif-Based Embedding

 Solving an energy minimization problem through multiple iterations to determine vertex positions

$$\min_{p:V \to S} \sum_{\{i,j\} \in V^{(2)}} \frac{f(i,j)}{a+1} \|p(i) - p(j)\|^{a+1} - \frac{w_i w_j}{r+1} \|p(i) - p(j)\|^{r+1}$$
Attraction
Repulsion

- Force-directed embedding: $f(i,j) = w_{ij}$
 - Conventional design
- Motif-Based Embedding: $f(i,j) = w_{ij} + m_{ij}$
 - Weights calculated from edges and motifs
 - Strong attraction within motifs

Motif-Based Weighting

- Weighting every pair of vertices by $f: V \times V \rightarrow \mathbb{R}$, with strong attraction within the motifs of interest
 - Example:

 $f: \{i, j\} \mapsto w_{ij} + m_{ij}$ w_{ij} : the existence of an edge $\{i, j\}$ m_{ij} : # of motifs containing *i* & *j* together

Mixing: 0.43

Mixing: 0.26

Many motifs (triangles)

are within a cluster

but not across clusters

 The lower the mixing (fraction of sum of inter-community weights) is, the more detectable the community structure is

Performance Evaluation: Synthetic Networks

Embedding methods

- (i) Motif-based embedding (2-dim. space) Proposed method
- (ii) Force-directed embedding (2-dim. space)
- (iii) Spectral embedding (k-dim. space)

(iv) Spectral embedding with motif-based weights (k-dim. space)

Used motifs

- Triangles for all synthetic networks
- NMI results (clustering: embedding + k-means)

	Proposed	Method (ii)	Method (iii)	Method (iv)
Mixing = 0.4	0.99	0.89	0.70	0.73
Mixing = 0.5	0.84	0.79	0.37	0.41
Mixing = 0.6	0.58	0.47	0.13	0.26

Performance Evaluation: Real Networks

Used motifs

- Social graphs (Football network): triangles
- Bipartite graphs (Malaria network): wedges

Accuracy

r			
Proposed	Method (ii)	Method (iii)	Method (iv)
0.93	0.91	0.75	0.89
1	0.52	0.01	1
	Proposed 0.93 1	Proposed Method (ii) 0.93 0.91 1 0.52	Proposed Method (ii) Method (iii) 0.93 0.91 0.75 1 0.52 0.01

Embedding results of each algorithm for the football network

LinkBlackHole*: Robust Overlapping Community Detection Using Link Embedding IEEE TKDE 2019 (Prior work: IEEE ICDE 2014 & 2016)

Joint work with J. Kim (ETRI), B.S. Lee (U. Vermont), and J.-G. Lee (KAIST) (Prior work: collaborated with S. Ryu (ADD), S. Kwon (Samsung), and K. Jung (SNU))

Proposed Algorithm: LinkBlackHole*

- Step 1: Link-space transformation on the original graph
- Step 2: BlackHole embedding on the link-space graph
- Step 3: Clustering for the vertex positions of the link-space graph
- Step 4: Membership translation procedure
 - 4-1: Disjoint communities of the vertex positions of the link-space graph
 - 4-2: Disjoint communities of the links of the original graph
 - 4-3: Overlapping communities of the vertices of the original graph

Phase I: Link-Space Transformation

Topological structure

- Link (original graph) → node (link-space graph)
- Two incident links (original graph) \rightarrow link (link-space graph)

Weights

Similarity between links (original graph) → weight of a link (link-space graph)

Phase II: BlackHole Embedding + Clustering

- Link Embedding: Applying a BlackHole embedding to the link-space graph
- Using structural clustering (SCAN) that can assign a node into hubs or outliers (neutral membership)

Performance Evaluation

Providing higher quality for both synthetic and real-world networks

Effects of fraction of overlapping nodes and various base-structures

Normalized measure of (Quality + Coverage) for each algorithm

Thank You Very Much! Any Questions?